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Research Center. Mr. R. M. Hueschen was the NASA Technical Representative monitoring 
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ABSTRACT 

This report investigates relationships between observers, Kalman Filters and dynamic 

compensators using feedforward control theory. In particular, the relationship, if any, 

between the dynamic compensator state and linear functions of a discrete plant state 

are investigated. It is shown that, in steady state, a dynamic compensator driven by 

the plant output can be expressed as the sum of two terms. The first term is a linear 

combination of the plant state. The second term depends on plant and measurement noise, 

and the plant control. Thus, the state of the dynamic compensator can be expressed as 

an estimator of the first term with additive error given by the second term. Conditions 

under which a dynamic compensator is a Kalman filter are presented, and reduced-order 

optimal estimators are investigated. 
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I. INTRODUCTION 

In Appendix A of Reference 1, relationships were developed between dynamic com- 

pensators and observers. A basic question answered in Appendix A of Reference 1 is 

0 When is a dynamic compensator an observer of a linear function of plant states? 

In this short report, the following more general question will be answered: 

0 What is the relationship between a dynamic compensator and the corresponding plant 

dynamics? 

The dynamic compensator may or may not be an observer of plant states. This question 

is resolved using the theory of feedforward control developed in Reference 2. After the 

general question is answered, the solution is used to  determine optimal Kalman filters and 

reduced-order optimal stochastic observers. 

11. FIRST REPRESENTATION 

A compensator of any chosen order may be represented as 

The compensator state vector is gc ,k ,  the compensator control vector is u C , k  and Ek is 

the plant control vector. The compensator is related to the plant by choosing E,, the 

compensator control, as follows 



The plant is represented as 

-k Y = C E k + z k  (4) 

The state vector is g k ,  the control vector is t&, as previously mentioned, and the white noise 

disturbance is g k .  The measurements are y k .  The white noise measurement disturbance 

vector is 2,. 

Using Reference 2 as a guide, the following equation is posed as the relationship 

between the plant and the compensator, 

The assumption about the relationship between the plant and compensator in Equation 5 

becomes valid if all the unknown matrices in Equation 5 can be uniquely determined. 

Substituting Equation 2 into Equation 5 yields, 
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B 2 2  = I 

B23 = B33 = . . . = O 

From Equation 1, the following is true 

~ 
From Equation 5 ,  the following occurs 

I 

I Equating Equation 11 and Equation 12, results in the following algebraic relationships, 
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From Equation 13, the S 1 1  matrix satisfies the Lyapunov equation 

d c  s 1 1  + Sll(+) = - r c  c 

the other S matrices are obtained as 

d c  s 1 2  = s 1 1  - r u  

d c  s 1 3  = s 1 2  

d c  s 1 4  = s 1 3  

From Equation 14, the A matrices are obtained as 

d c  A 1 2  = s 1 1  rur 

d c  A 1 3  = A 1 2  

From Equation 15, the B matrices are obtained as 

d c B l 2  = - r c  

d c  B 1 3  = B 1 2  

(23) 

Using techniques developed in Reference 2, further simplifications of the relationships 

are possible. The compensator matrix, dc, is assumed to be invertible. Substituting the 

solution of the S, A, and B matrices back into Equation 5, and expressing Equation 5 in 

the z domain produces, 
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(3 -C 2 = [ S 1 1 ( I  + 4;lz + 4 F 2 Z 2  + . . .) 5121 

+ [I+4;'z+4c -2 z 2 + . . . ] A  l 2 W  

+ [I + 4,'z + 4 c  -222  + . . .] B 1 2  2 (24) 

&, the compensator state, and the z-domain variable, z,  in Equation 24 should not be 

confused. It is easily shown that 

hence, define 

Converting Equation 26 back to the time domain and using Equations 17, 20 and 22, the 

first important result is obtained, 

From Equation 28, it can be concluded that if the noise sources are zero, if 

and if, 

is stable 

ru = sll r (29) I 
then the dynamic compensator is an observer and S1l determines what states in :k,&,k 

observes, i.e., 
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If Equation 29 is not satisfied, then the dynamic compensator state observes the plant 

states plus an additional signal, &, caused by the plant controls. 

The white noise assumption for t& and t)k is not used in the derivation. The variables 

-k w and t)k show how any type of disturbance, Le., biases, white noise, colored noise, etc., 

alter the dynamic compensator operation. It is rare in implementation that rU can be 

chosen to equal Sllr exactly. Equations 27 and 28 are potentially useful in evaluating 

I observer sensitivity to plant variations. 

111. SECOND REPRESENTATION-KALMAN FILTER APPROACH 

The derivation in Section I1 is altered by assuming Equation 4 changes to 

%,k = Yk+l (31) 

The dynamic compensator is now using the most recent measurement of - y to influence 5. 

Equations 6 to 10 change to  

S2l = (3 

sZ2 = c r  

523 = s24 = . . . = 0 
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The other changes are 

(Equation 16) 

(Equation 17) 

(Equation 20) 

(Equation 22) 

4, S I 1  + S11(-4) = - r c  c4 

dC s12 = sll r - ru - rc c r 



The expression for &,k in Equation 26 changes to 

- "# 

:&+I = 4 c : k  - [(SI1 - r C  c)r - ru] g k  

- ( s 1 1  - r c  c ) r w  + r c  g k + l  (47) 

In a Kalman filter formulation, the matrix S11 should be the identity matrix and U k  

should not affect the estimate. If these constraints are placed on Equation 46, Equation 

40 changes to 

4 c  = (I - r c  C)4 

Tu is chosen to eliminate in & in Equation 47, yielding 

ru = (I - rc c)r 

Substituting Equations 48 and 49 into Equation 3, yields, 

(49) 

Equation 50 is immediately recognizable as the update expression in a Kalman filter if rC 
is a Kalman filter gain. 

I 

l 
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Substituting Equations 48 and 49 into Equations 46 and 47, yields, 

1 

... 
g k + l  = (I - r c  c )4& - (I - r c  c ) r w  w k  + r c  l.'k+l (52 )  

where i t k  is the steady state noise corrupting signal to the estimate. The compensator gain 
c 
1 

1 

rC is the only unknown in Equations 51 and 52. I 

i Clearly the objective of the compensator is to reduce the error term, &, in Equation 

51. The next section constructs an optimization problem for minimizing g k .  

1 

IV. OPTIMAL SOLUTIONS FOR COMPENSATOR 

DYNAMICS - THE KALMAN FILTER 

One of the most important features of the results in Section I11 is that the compen- 

sator state is decomposed into a component related to the plant states and a component 

resulting from the noise sources in the plant and measurements. If there are elements in 

the compensator that are unknown, then one approach for choosing the unknown elements 

is to minimize the compensator state component caused by the noise sources. 

I 
i 
I 
1 

I 
I 

As an example, consider the case discussed in Chapter I11 which resulted in a Kalman 

Filter structure. Equations 51 and 52 are 
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where rC, the compensator gain, is an unspecified matrix. Assume that rC is to be chosen 

to minimize the error, i&, in steady state, i.e., 

J = E { f F  Q &} 
The cost function can be rewritten as 

J = tr{Q P }  

where 

(55) 

P =  E { g k  gf} (57) 

P is the estimation error covariance in steady state. The steady-state estimation error 

covariance can be computed using Equation 54 to obtain, 

W is the covariance of the process noise, rCut.uk, and V is the covariance of the measurement 

noise, 2,. If the right hand side of Equation 58 is substituted into J and t3J/t3rC is 

computed then, 

(59) 
t3J T T  o = - = r ,(cdp4 c + cwcT + v) - 4 ~ 4 ~  cT - wcT 

3 l - C  

Defining 

P(-) =CjP4T+W 

Then, rC is given by 

rc = P(-) cT[c P(-) cT + V I - '  
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The expression for rC in Equation 61 is recognized as the steady-state optimal Kalman 

filter gain. P(-) in Equation 60, is the covariance of the error extrapolation as discussed 

in Reference 3. 

It should be clear from the previous example that minimizing Z k  causes the compen- 

sator to behave as an optimal estimator. The next objective of this report is to compute 

reduced-order optimal estimators. The next section derives the optimal (n - e )  compensator 

that optimally observes the n - plant states not measured in C. 

V. REDUCED-ORDER OPTIMAL ESTIMATORS 

For reasons that will become clear later, the reduced-order optimal estimator is best 

designed assuming the following structure 

(62) - 
%,k+l - d C  z c , k  + rl -k+l Y + r 2  !/k + rU g k  

The relationship between the plant and the model in Equation 62 using the theory of 

feedforward control is 

d c  s 1 1  + S 1 1 ( - d )  = -r2 c - rl c4 

Assume the plant states have been rearranged so that 

(65) I 
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and C1 is an l x l invertible matrix. The rearrangement can always be done if C is of full 

rank. Using the following transformation matrix to rearrange the plant states, 

results in the plant representation 

The objective is to find the optimal compensator which estimates only the (n - e) p - states 

using only the y measurements. - 
Consider applying the transformat ion 

l n - l  
(69) 

to the plant. The matrix L is unknown. Multiplying the left side of Equation 68 by T, in 

Equation 69 produces, 

I O  A11 A12 

( L  I )  ( gk+l )  pk+ 1 = ( A21 + L A l l  A22 + LAl2)  (;;) 
+ ( B~ %k + rw2 Wk 

The following equation for p occurs as the lower partition in Equation 70, 

12 
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The dynamic relationship for p in Equation 71 is the equation which will be used for the 

compensator dynamics with the noise sources in Equation 71 eIiminated. The need for 

y and y in the compensator equation is evident when Equation 71 is compared with 

Equation 62. The objective is to  find the matrix L which minimizes f where 

- 

- k + l  -k 

Comparing Equation 72 with Equation 62, the solution for SI1 is 

It is easily shown, by direct substitution, that 

e (n- e)  
SI1 = ejo I ]  

satisfies Equation 73. The matrix S11 indicates that & k ,  using the structure in Equation 

72, will observe P k  as desired. The transformation matrix in Equation 69 is used in 

Reference 4 to construct the (n - e) reduced order observer. It can be shown that if (C, A )  

is an observable pair then (Al2,  A22) is an observable pair. Observability guarantees that 

there exists a gain L which stabilizes the system (A12, A22). 

i 

From Equation 64, with I'u chosen to eliminate U k ,  Le., I'u = B2+L B1,  the estimation 

error dynamic equation reduces to 

Constructing the steady-state cost function yields, 

J =  E {gz Q f k }  = tr{Q P }  
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where 

P is the steady state estimation error covariance. The optimal solution for the observer 

gain, L,  which minimizes the cost function in Equation 77 when measurement noise cor- 

rupts the output, Y k ,  can be shown to be the solution of a cubic matrix equation. In this 

report, we will restrict attention to the case where the plant output contains no measure- 

ment noise. Using Equation 75, the steady state estimation error covariance satisfies the 

equation, 

W 

I Substituting the right side of Equation 78 into Equation 76 and constructing d J / d L ,  

I results in 

d J  
0 = - dL = L [ A  12 P AT2 + W3] + [A22 P AT2 + "21 

The solution for L is 

(79) 

The numerical solution for P and L can be obtained using Equations 78 and 80 and the 

approach in the next section. Note that the Q weighting matrix does not affect the L gain 

matrix. 
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VI. OPTIMAL ESTIMATORS OF ARBITRARY ORDER 

This section will describe a method for obtaining an optimal estimator of arbitrary 

order. Consider the plant shown in Equation 68. Assume the states have been reordered 

so that those states not measured in - y for which estimates are required are partitioned as 

the states p in the following, -2 

A l l  A12 A13 

(81) 

The objective is to cause the dynamic compensator to optimally estimate only the p 

states. Applying the following transformation to the plant 
-2 

I O 0  

L O I  
yields the following equation for p -2 

A dynamic compensator can be constructed which observes p if a matrix L can be -2 

found which stabilizes (A33 + LA13) and causes (A32 + LA12) to be a zero matrix. 

The following cost function strives to achieve both objectives 

(84) 
1 

J = E {Z: 9 1  &} + p ( ( A 3 2  + LA12) Q 2  (A32 + L A # }  

If L does not stabilize the compensator, then the estimation error, &, would not be stable 

and J would not be finite. Increasing the Q2 weighting matrix causes L to minimize 
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A32 + LA12. The dynamic compensator is an observer of p 

The form of the compensator is 

only if A32 + LA12 is zero. -2,k 

If A32 + LA12 is not a zero matrix, then Equation 86 must be solved to determine exactly 

what combination of p, and p the compensator state actually observes. The covariance 

equation for the estimation error without measurement noise is 
- -2 

P = (A33 + LAi3)  P (A,T, + AT3 LT) - (Si1 + LII 0 01) W (S,', + 0 LT) (87) (1) 
In order to minimize Equation 84, the equality constraints in Equations 86 and 87 are 

introduced into J using Lagrange multipliers, 

- (S11+ L(I  0 01) w (ST, + 0 LT) } YT 
(0) 

The X and Y matrices are the Lagrange multipliers. The necessary condihns for a 

minimum for J are as follows: 

16 
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An algorithm to solve for L based on the algorithm in Reference 5 would proceed as follows: 

Choose an L which stabilizes A33 + LA13 = &. 

Choose a scalar CY for which the following converges: 

1. Solve for SI1 in Equation 86. 

2. Solve for Y in Equation 89. 

3. Solve for X in Equation 90. 

4. Solve for P in Equation 87. 

5 .  Solve for L,,, in Equation 91. 

6. Choose L k + l  = L k  + Q(L,,, - L k ) .  

7. Check for convergence. I f L k + l  destabilizes the plant, reduce Q until L k + l  stabilizes 

the plant. If convergence is not obtained, go to Step 1 and repeat. 

Equation 91 has the following form 

LA + BLC = D 

If either A or B and C are invertible, Equation 92 can be rewritten as 

L = A L B + C  (93) 
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and solved using readily available algorithms for solving general Lyapunov equations. If 
I , 
I 
I products. 

A and B and C are not invertible, then L in Equation 92 can be solved using Kroneker 

VII. SUMMARY 

The important contributions of this report are Equations 46 and 47 and Equations 

63 and 64. Given a dynamic compensator of any order and a plant, these equations show 

how the compensator state is related to the plant states, controls, and noise sources. The 

conditions which cause the dynamic compensator to revert to an observer or Kalman filter 

are readily identified from the relationships in the equations. Optimal stochastic observers 

are developed by minimizing the estimation error identified in Equations 47 and 64. 
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